导读:pandas.read_excel接口用于读取Excel格式的数据文件,由于它使用非常频繁、功能强大、参数众多,因此本文专门做详细介绍。
作者:李庆辉
来源:华章科技
01 语法
pandas.read_excel接口的语法如下:
pd.read_excel(io, sheet_name=0, header=0,names=None, index_col=None,usecols=None, squeeze=False,dtype=None, engine=None,converters=None, true_values=None,false_values=None, skiprows=None,nrows=None, na_values=None,keep_default_na=True, verbose=False,parse_dates=False, date_parser=None,thousands=None, comment=None, skipfooter=0,convert_float=True, mangle_dupe_cols=True, **kwds)
02 文件内容
io为第一个参数,没有默认值,也不能为空,根据Python的语法,第一个参数传参时可以不写。可以传入本地文件名或者远程文件的URL:
# 字符串、字节、Excel文件、xlrd.Book实例、路径对象或者类似文件的对象# 本地相对路径pd.read_excel('data/data.xlsx') # 注意目录层级pd.read_excel('data.xls') # 如果文件与代码文件在同一目录下# 本地绝对路径pd.read_excel('/user/gairuo/data/data.xlsx')# 使用URLpd.read_excel('https://www.gairuo.com/file/data/dataset/team.xlsx')
与read_csv一样,需要注意,Mac和Windows中的路径写法不一样。
03 表格
sheet_name可以指定Excel文件读取哪个sheet,如果不指定,默认读取第一个。
# 字符串、整型、列表、None,默认为0pd.read_excel('tmp.xlsx', sheet_name=1) # 第二个sheetpd.read_excel('tmp.xlsx', sheet_name='总结表') # 按sheet的名字# 读取第一个、第二个、名为Sheet5的sheet,返回一个df组成的字典dfs = pd.read_excel('tmp.xlsx', sheet_name=[0, 1, "Sheet5"])dfs = pd.read_excel('tmp.xlsx', sheet_name=None) # 所有sheetdfs['Sheet5'] # 读取时按sheet名
04 表头
数据的表头参数为header,如不指定,默认为第一行。
# 整型、整型组成的列表,默认为 0pd.read_excel('tmp.xlsx', header=None) # 不设表头pd.read_excel('tmp.xlsx', header=2) # 第三行为表头pd.read_excel('tmp.xlsx', header=[0, 1]) # 两层表头,多层索引
05 列名
用names指定列名,也就是表头的名称,如不指定,默认为表头的名称。
# 序列,默认为Nonepd.read_excel('tmp.xlsx', names=['姓名', '年龄', '成绩'])pd.read_excel('tmp.xlsx', names=c_list) # 传入列表变量# 没有表头,需要设置为Nonepd.read_excel('tmp.xlsx', header=None, names=None)
06 其他
其他参数与pandas.read_csv的同名参数功能一致,如果想使用仅pandas.read_csv有的参数,可以考虑将数据保存为CSV文件,因为CSV文件相对通用、读取数据快且处理方法比较丰富。
用Python读取CSV文件的操作详解可戳:史上最全!用Pandas读取CSV,看这篇就够了。
07 小结
本文介绍了pandas.read_excel相对于pandas.read_csv专有的参数功能。由于Excel文件在日常工作中较为常用,所以需要熟练掌握Excel的数据读取功能。另外对于一些量比较小的Excel数据文件,在做数据临时处理时,可以复制并使用pd.read_clipboard()来读取,非常方便。
关于作者:李庆辉,数据产品专家,某电商公司数据产品团队负责人,擅长通过数据治理、数据分析、数据化运营提升公司的数据应用水平。精通Python数据科学及Python Web开发,曾独立开发公司的自动化数据分析平台,参与教育部“1+X”数据分析(Python)职业技能等级标准评审。中国人工智能学会会员,企业数字化、数据产品和数据分析讲师,在个人网站“盖若”上编写的技术和产品教程广受欢迎。
本书摘编自《深入浅出Pandas:利用Python进行数据处理与分析》,机械工业出版社华章公司2021年出版。转载请与我们取得授权。
延伸阅读《深入浅出Pandas》
推荐语:这是一本全面覆盖了Pandas使用者的普遍需求和痛点的著作,基于实用、易学的原则,从功能、使用、原理等多个维度对Pandas做了全方位的详细讲解,既是初学者系统学习Pandas难得的入门书,又是有经验的Python工程师案头必不可少的查询手册。《利用Python进行数据分析》学习伴侣,用好Python必备。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。